Math 206A Lecture 18 Notes

Daniel Raban

November 7, 2018

1 Meditations on Cauchy's Theorem

1.1 Alexandor's theorem and Stoker's Conjecture

Theorem 1.1 (Alexandor, 1920s). Let $P, P' \subseteq \mathbb{R}^3$ are convex polytopes with $\Phi : \alpha(P) \to \alpha(P')$ is such that for a;; $F \in \alpha(P)$ with $\dim(F) = 2$, $\{ \angle in F \} \simeq \{ \angle in \Phi(F) \}$. Then P and P' have equal corresponding dihedral angles.

This is really a corollary of our proof of Cauchy's theorem. We basically proved this as a lemma to get Cauchy's theorem.

Here is a related conjecture.

Theorem 1.2 (Stoker's conjecture, 1960s). If you know all face angles, you know all dihedral angles and vice versa.

People believe this to be true, but the conjecture is still open.

1.2 Non-examples to Cauchy's theorem

Here are some non-examples of Cauchy's theorem.

Example 1.1. Take a triangular prism, and remove a triangular pyramid from one of the sides. This is not convex, so Cauchy's theorem doesn't apply, even though it has the same lattice as the triangular prism with with a triangular pyramid on top. But we can get from one to another by continuously deforming.

Corollary 1.1 (Cauchy). Let $\{P_t : t \in [0,1]\}$ be a continuous family of 3-dimensional convex polytopes such that $\alpha(P_t) \cong \alpha(P_0)$ and 2-faces in P_t are congruent. Then $P_0 \simeq P_1$.

Example 1.2 (Bricard's octahedron). Draw four chords on a circle, with 2 intersecting. Now, in the z direction, put a vertex above and below the center of the circle. Now connect the vertices with edges to form 8 faces that intersect each other. If you push the north pole and the south pole towards each other, the polygon is flexible. So this is a non-example to Cauchy's theorem because it is self-intersecting. Are all non-examples self intersecting?

Theorem 1.3 (Conelly, 1977). There exists a flexible polyhedral sphere embedded into \mathbb{R}^3 .

Scientific American used to publish paper cutouts of these kinds of things, where you could build your own flexible polyhedron. Probably dozens of kids made their own flexible polyhedra.¹

1.3 Spherical Cauchy and high-dimensional Cauchy

Theorem 1.4 (spherical Cauchy's theorem). For all $P, P' \subseteq S^3_+$, the conclusions of Cauchy's theorem hold.

Proof. The part in our proof where we used a property of Euclidean space was that intersecting a small sphere with a cone gives us a spherical polygon. This is even more clear for spherical polygons. \Box

Why do we care about spherical polytopes?

Theorem 1.5 (high-dimensional Cauchy). For all convex polytopes $P, P' \subseteq \mathbb{R}^d$ with $d \ge 3$, $\dim(F) = d - 1$.

Proof. Prove high-dimensional spherical Cauchy by induction. Then we get this theorem by reduction to the non-spherical case. \Box

1.4 Rigidity

If you've ever been to a construction site, you know that the rigidity of a building is only dependent on the beams holding up the building.² These are the edges. If we have n vertices of a polytope, and we triangulate it, we get 3n - 6 edges. We want to say that the lengths of these edges should really determine the polytope. Next time, we will prove Dehn's theorem, which talks about this.

¹According to Professor Pak, you have to be a very special kid to enjoy this sort of thing.

²Who knew that discrete geometry would be interesting to engineers?